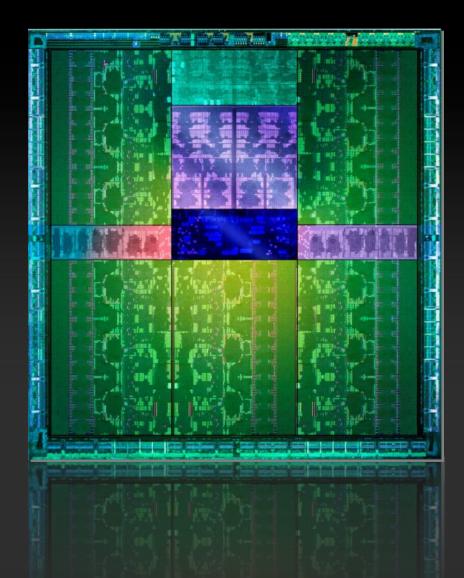


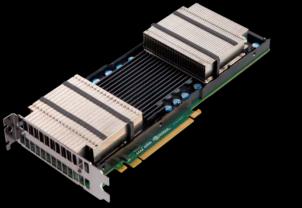
VIP Briefing on GPU Accelerator Technology

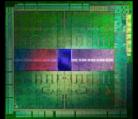
Steve Scott, CTO of Tesla Ian Buck, GM of GPU Computing Dr. Dirk Pleiter, Juelich


Long Term Goals for Tesla

Power Efficiency Ease of Programming And Portability Application Space Coverage

KEPLER THE WORLD'S FASTEST, MOST EFFICIENT HPC ACCELERATOR


Dynamic Parallelism


SMX Hyper-Q

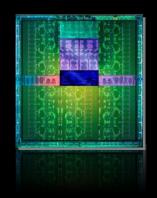
(power efficiency)

(programmability and application coverage)

Dual GK104 GPUs

3x Single Precision Video, Signal, Life Sciences, Seismic

Available Now



3x Double Precision Hyper-Q & Dynamic Parallelism CFD, FEA, Finance, Physics, etc.

Available Q4 2012

Kepler GK110 Block Diagram

- 7.1B Transistors
- 15 SMX units
- > 1 TFLOP FP64
- 1.5 MB L2 Cache
- 384-bit GDDR5
 ~250 GB/s
- PCI Express Gen3

	PCI Express 3.0 Host Interface											
	GigaThread Engine											
Memory Controller	SMX SMX SMX SMX SMX SMX SMX SMX SMX SMX SMX SMX SMX SMX SMX	Memory Controller										
Memory Controller	L2 Cache											
ler Memory Controller		Memory Controller Memory Controller										

Kepler GK110 SMX vs Fermi SM

SM.			in Dava							
	a battera	-	Warp Schedurer							
	-		Departs Ved							
-	-	-	-		-					
Com	Gere	Core	Core:	LOST						
Cire	Care	Cire	Core	LOW	SPD.					
Ces	Com	Com	Core	LOST						
Con	Core	Gere	Core	LOST	ano.					
Con	Gen	-	Core	LUST	srù					
Care	Core	Care	Care	LOIST						
Con	Com	Com	Cale	LOWER						
Care	Care	Care	Core	LOST						
-					-					
			morp (1	1 Castle						
		Line of the second	1 CALIFORN							
Tes		Tex	Ten		fen:					
		THICKS	14.00							

3x sustained perf/W

Ground up redesign for perf/W 6x the SP FP units 4x the DP FP units Significantly slower FU clocks

SMX Instruction Casha																			
-		rp Bot	oduler			w	irp Sched		II FII CHI			rgi Sath	eduler	_	-	w	rp Sched	white	
E.PH	uelach th	•	Dispatati	U+8	-	patch U		Nepitch	Unit	- Dis	naich Us		Dispetch	Qvill .	Dis	petch ()		Dispetch	294K
							R	egister	File (I	55,536	x 32-b	#0							
		+		+		٠			-	+	-		+		4				٠
Care	Com	Com	CP Unit	Con	Com	Cone	DP Int	LDST	seu	Gant	Cote	Care	DP SHE	Care	Cost	Care	DP Unit	LOST	sru
Cure	Core	Core	DP UNIT	Core	Core	Gure	OP linit	LDST	sFU	Com	Core	Core	DP Unit	Core	Core	Core	DP Linit	inst	SFU
Com	Conc	Com	DP Unit	Con	Corr	Core	DP Unit	LINET	SFU	Com	Core	Care	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU
Corr	Cere	Gun	EXP Ment	Care	Care	Core	OP SHI	LDIST	SFU	Core	Cole	Core	DP LINE	Gare	Core	Care	DP-Unit	LOST	SFU
Gare	Cont	Cim	DP.Unit	Com	Core	Cone	OP Unit	LDIST	580	Core	Care	Gore	OP UNK	Gure	Cire	Core	DP Lint	LOST	SFU
Conv	Core	Core	DP Unit	Con	Core	Com	DP Unit	LDIET	SFU	Core	Con	Core	DP Link	Cere	Core	Core	DP Use	LDIST	SFU
Gón	Core	Con	DP Unit	Cón	Com	Core	OP Unit	LDIST	SFU	Com	Com	Core	OP Unit	Core	Core	Core	OP Unit	LDIST	SFU
Com	Core	Con	CP Link	Com	Core	Coni	DP Dee	1097	SEU	Gam	Con	Core	DP Unit	Core	Core	Core	OP Unit	LOWT	SFU
Gare	Core	Con	DP Unit	Con	Core	Core	OP Line	LDAT	SFU	Cone	Core	Gare	DP link	Core	Con	Core	DP Dest	LINET	SFU
Con	Cons	Com	DP Unit	Cote	Cors	Cure	OP Link	LOIST	SFU	Com	Core	Com	OP Lint	Core	Core	Core	OF Unit	LDIST	SFU
Core	Core	Gum	DP Unit	Core	Core	Core	OF Unit	LDST	sru	Cone	Core	Core	DP Line	Gure	Gore	Gare	DP Unit	LOST	SFU
Com	Cont	Cnn	CP Vol	Cán	Care	Com	OP Unit	LDOT	SF U	Com	Core	Core	DP Unit	Gare	Con	Core	OP Ven	LOST	sru
Con	Cons	Com	DP Lind	Com	Com	Cure	DP Linit	LDAT	SFU	Com	Core	Core	OP Unit	Core	Con	Core	TP Unit	LDIST	SFU
Com	Core	Con	DP Unit	Con	Core	Gore	OP Unit	LOST	3 7 U	Com	Com	Core	DP Lint	Core	Core	Core	OP Unit	LDIST	sru
Gam	Com	Com	DP une	Com	Core	Cont	SP linit	LDUT	SFU	Com	Core	Core	DP 100	Core	Core	Core	OP Unit	LDIST	SFU
Com	Core	Com	DP Unit	Com	Core	Gure	OP Link	LDST	SPU	Gam	Core	Care	DP Unit	Gara	Core	Core	CP Link	LOST	SFU
-	Unterconnect Network. 84 KB-Strami Memory I.LT Cacha																		
							92		l Read										-
	Tex		Tex	E.		Tex		Tex	1		Tex	Ì	Tex			Tex		Tex	
	Tex		Tex	6		Tex		Tex	1	1	Tex		Tex			Tex		Tex	

Selected Kepler ISA Enhancements

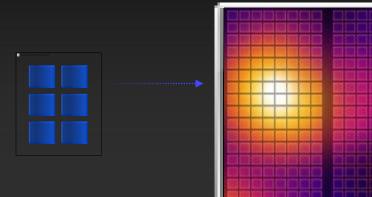
Larger number of registers per thread

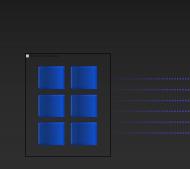
- 63 in Fermi \rightarrow 255 in Kepler
- Common performance limited in Fermi due to register spilling
- Significant performance improvement for some codes (e.g.: 5.3x on Quda QCD!)

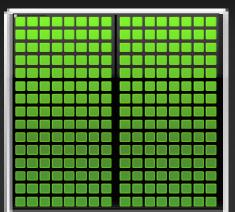
Atomic operations

- Added int64 to match int32
- Added functional units \rightarrow 2-10x performance gains

SHFL instruction for data exchange amongst threads of a warp

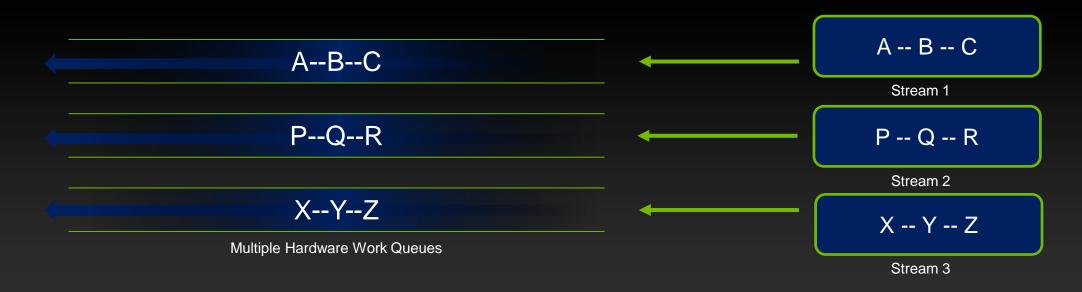

- Broadcast, shifts, butterflies
- Useful for sorts, reductions, etc.


Loads through texture memory


Higher bandwidth and flexibility for read-only data (const__restrict)

Hyper-Q

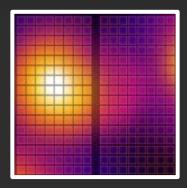
FERMI 1 Work Queue **KEPLER** 32 Concurrent Work Queues

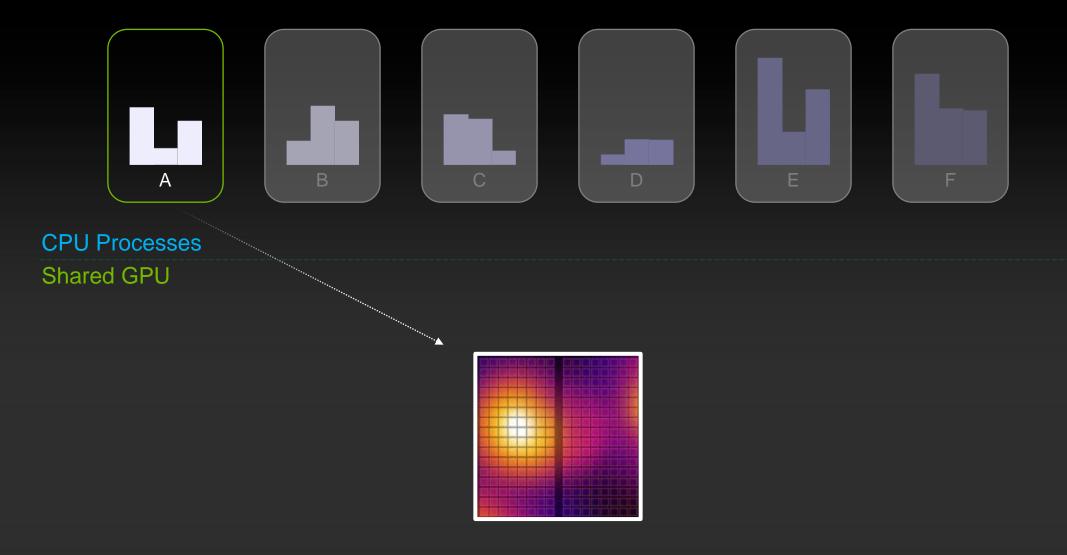

Fermi Concurrency

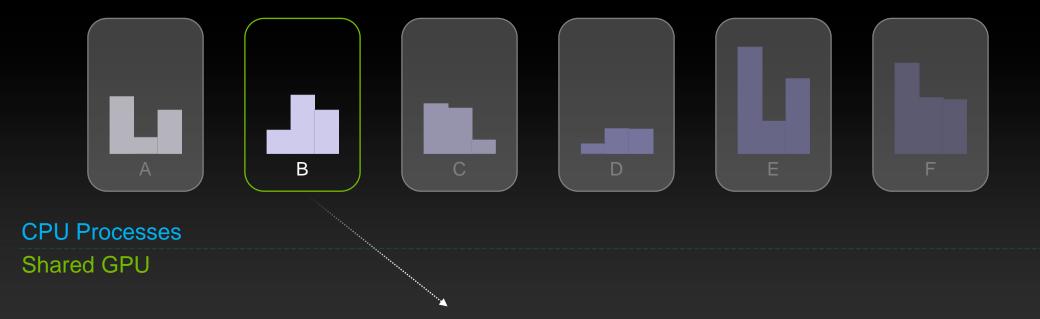
Fermi allows 16-way concurrency

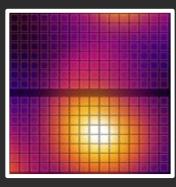

- Up to 16 grids can run at once
- But CUDA streams multiplex into a single queue
- Overlap only at stream edges

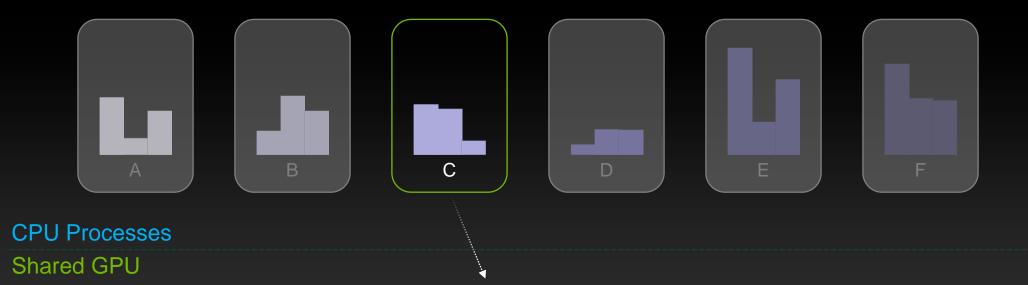
Kepler Improved Concurrency

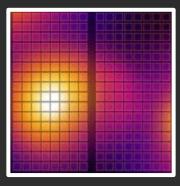


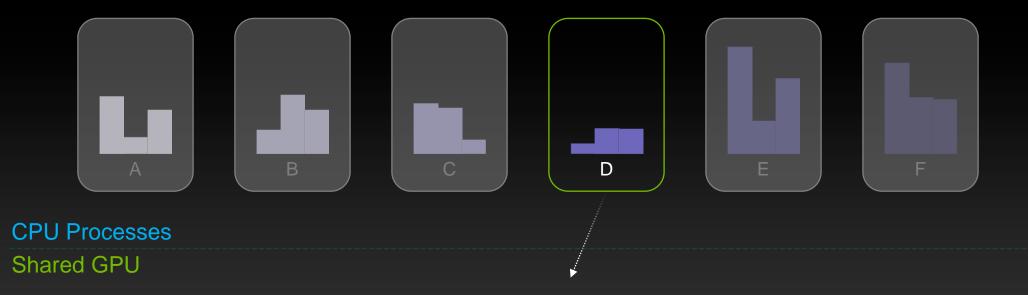

Kepler allows 32-way concurrency

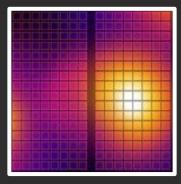

- One work queue per stream
- Concurrency at full-stream level
- No inter-stream dependencies

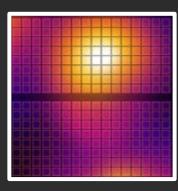


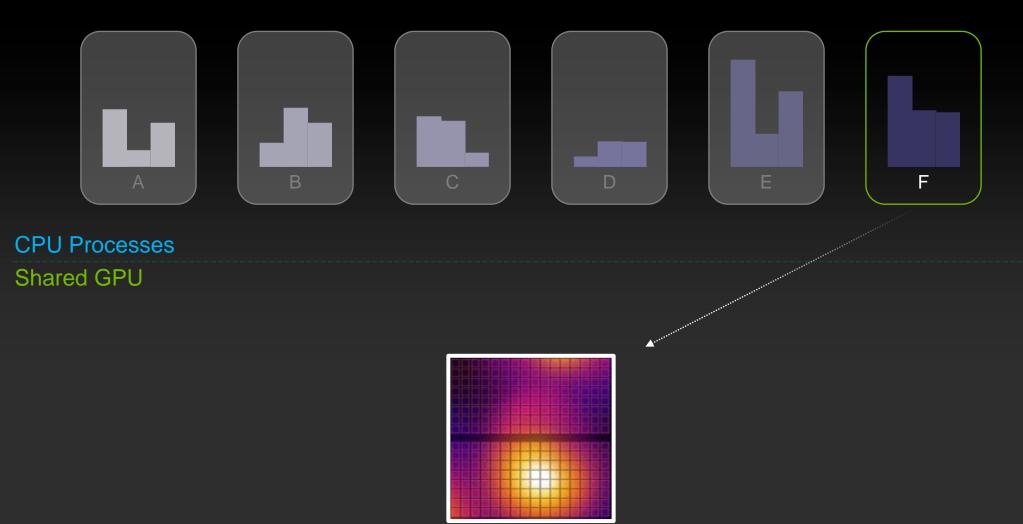

CPU Processes Shared GPU

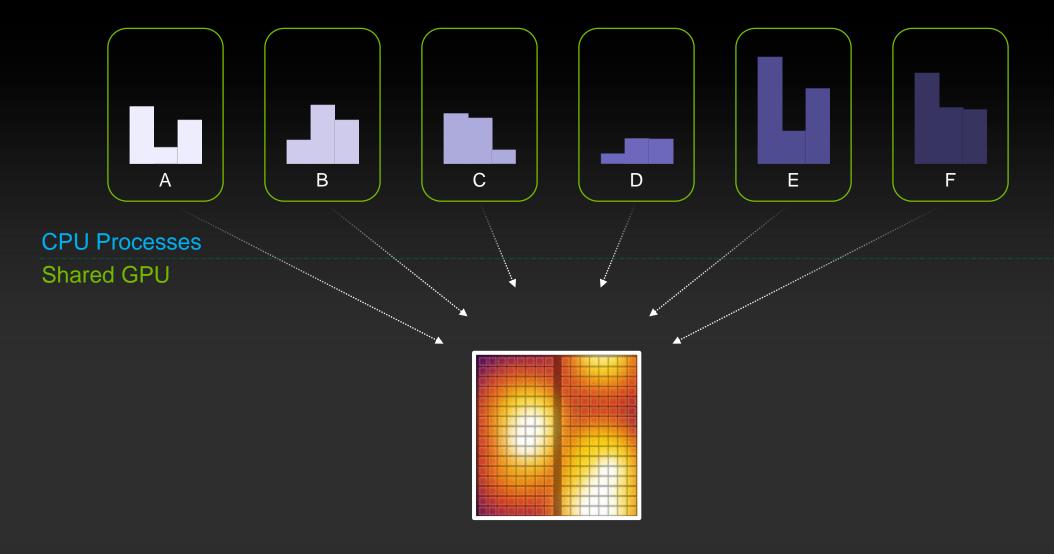




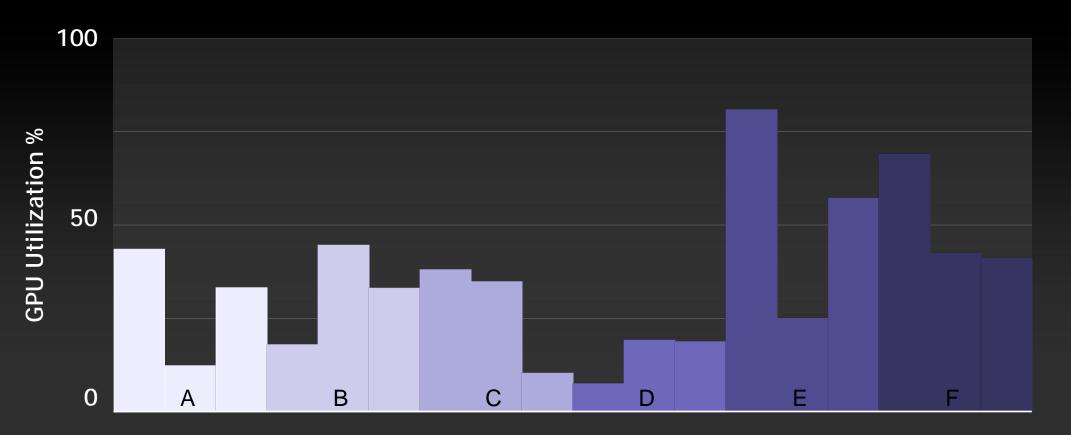




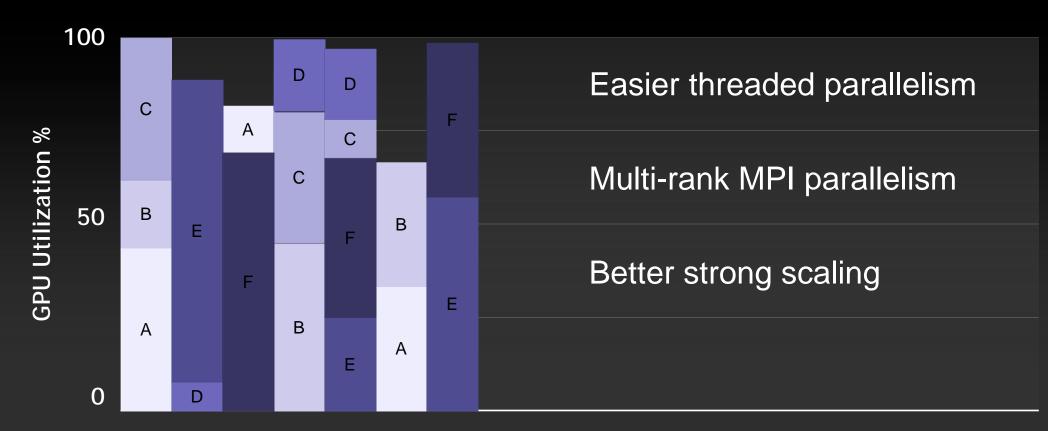




Shared GPU



Kepler Hyper-Q: Simultaneous Multiprocess


Without Hyper-Q

Time

.....

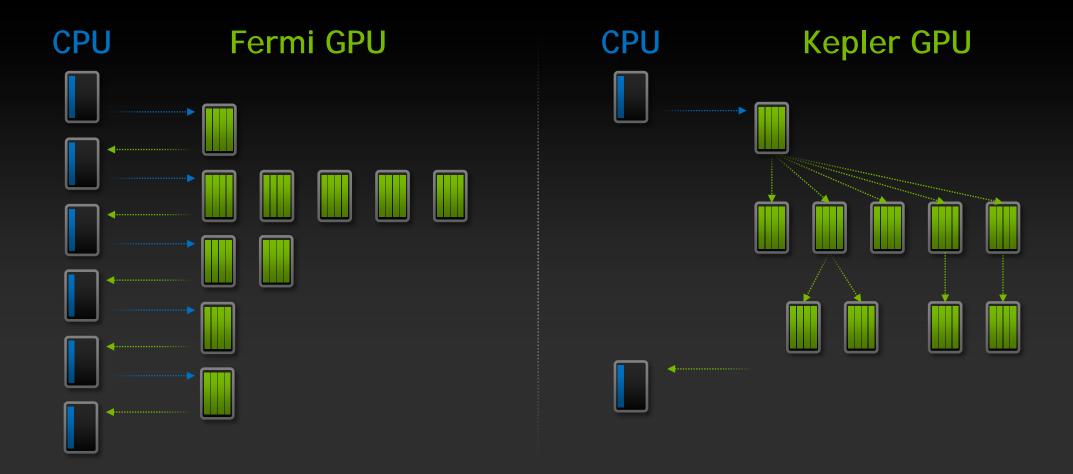
With Hyper-Q

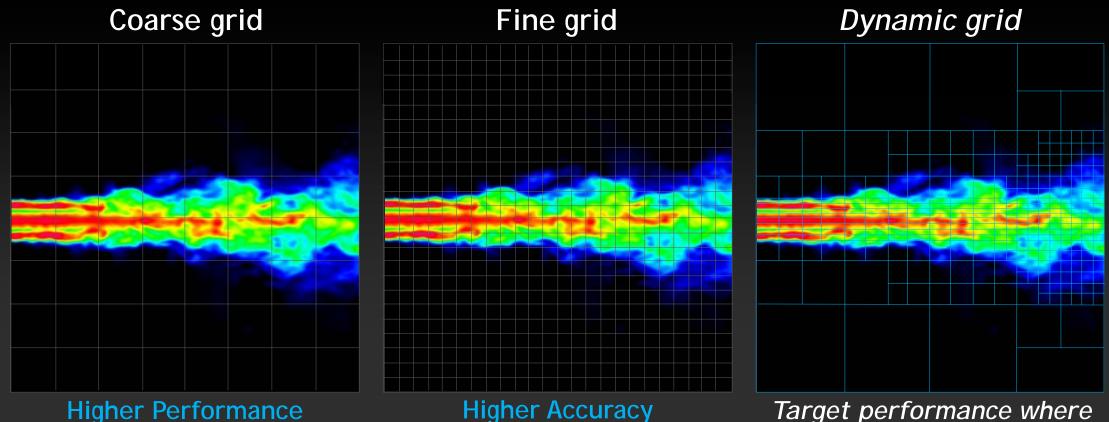
Time

.....

Dynamic Parallelism

The ability for any GPU thread to launch a parallel GPU kernel

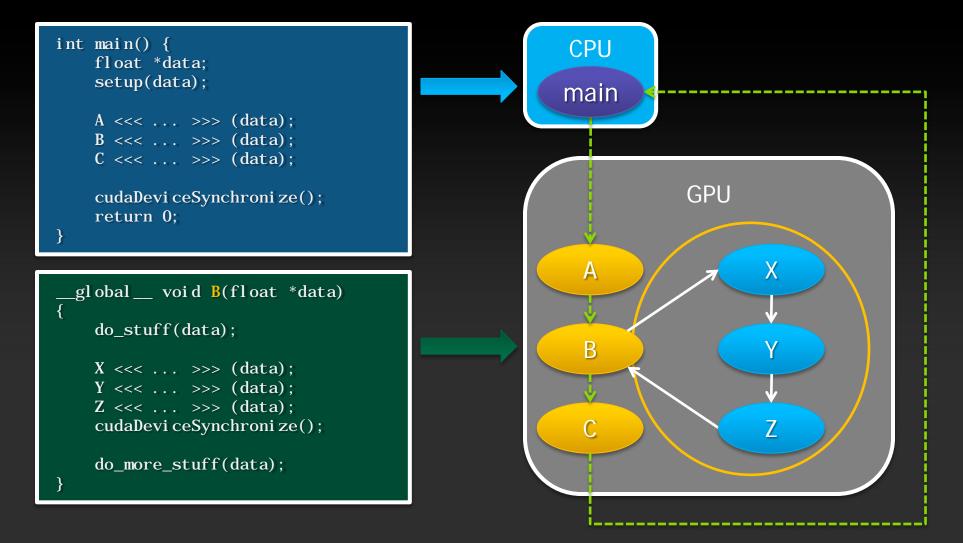

- Dynamically
- Simultaneously
- Independently


Fermi: Only CPU can generate GPU work

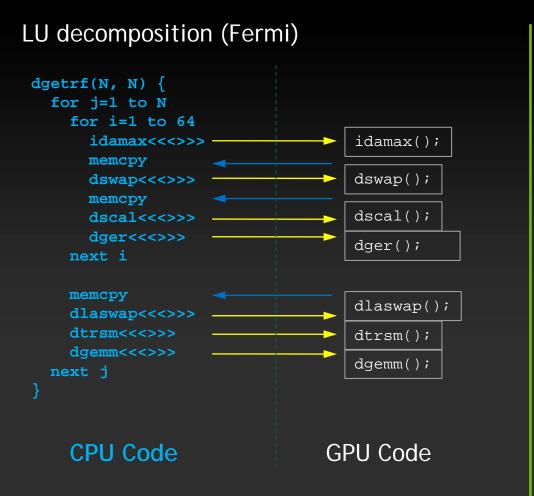
Kepler: GPU can generate work for itself

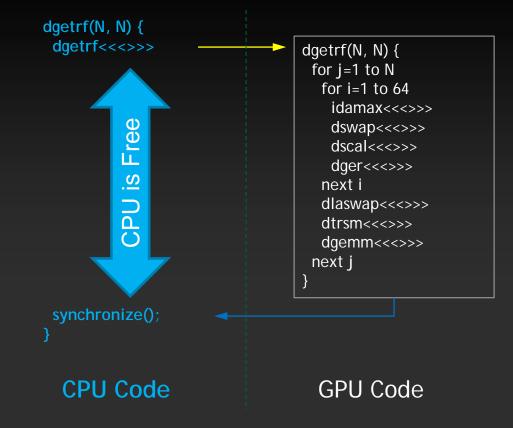
Dynamic Parallelism

Dynamic Work Generation



Lower Accuracy


Higher Accuracy Lower Performance Target performance where accuracy is required


Familiar Syntax and Programming Model

Simpler Code: LU Example

LU decomposition (Kepler)

CUDA By the Numbers:

>375,000,000 CUDA-Capable GPUs

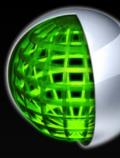
>1,000,000 Toolkit Downloads

>120,000 Active Developers

>500 Universities Teaching CUDA

CUDA 5

Nsight[™] for Linux & Mac


NVIDIA GPUDirect[™]

Library Object Linking

Preview Release Now Available

NVIDIA[®] Nsight[™] Eclipse Edition

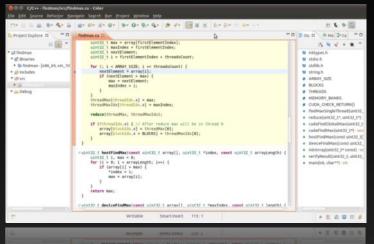
& Nam TOCCAN DO

this Size

Registers/Des

Distant Darry D'Robel

Shared Herniny Net


Theoreman

1 Cache Carifinie

[256.1.1]

Hart

• 10 10 10 10 10 • 0 • 9 • 9 • 10 • 1 1 10 • 0 • 0 •							
	1						
ebug H A H H H H H H H H H H H H H H H H H	- He Variables CUDA	Information	22 ** Breakpoi	nts i			
Findmax (C/C++ Application)	Q. sm 2 wa	(p 7		01			
cudaFindMax [0] [device: 0] (Suspended : Step)	* 🖬 [0] cudaFindMax	Device 0	ees(32, 1, 1),	(256,1,1)>>>			
CUDA Thread (0,0,0) Block (0,0,0)	*****	Running	564.2				
cudaFindMax() at findmax.cu: 114 0x91f3a8	₽ [®] (224,0,0)	Running	Warp 7 Late	0 E findmax.cu	113 (0x91f318)		
@ CUDA Thread (1.0.0) Block (0.0.0)	₽ (225,0,0)	Running	Warp 7 Lane	1 Findmax.cu	113 (0x91/318)		
Block (0,0,0) [sm: 0] (256 Active Threads)	₽ (220,0,0)	🔎 (220,0,0) Running		2 R findmax.cu			
Block (1,0,0) [sm: 2] (256 Active Threads)	- 🚚 (777 B M	Bunning	Warn 71 ane	1 Di Ferliman cur	111/0x91F118) +		
indmax.cu tt			* 🛛 🕃 Outline 🖩	F Disassembly ## Reg	itters II "O		
uint32 t nextElement; uint32 t 1 = firstElementIndex + threadsCount;				L 4 8 73 1			
			Name	T(0,0,0)B(0,0,0)	T[1,0,038(0,0,05		
<pre>for (; i < ARRAY SIZE; i += threadsCount) { nextElement + array[i];</pre>			222 810	0	1		
if (nextElement > max) {		702.911	16776272	16776272			
max = nextElement;			III 82	4935629	2024586		
maxIndex = 1;	Þ		IIIRJ	8192	8193		
3	. 46		202 19.4	3149939	8115414		
threadMax[threadIds.x] = maxindex; threadMaxIds[threadIds.x] = maxIndex;			WI RS	4	4		
threadmaxids[threadids.x] = Basindes]			112 R5	1048576	1048576		
and and the second s			· III'87	4	4		
omale 11			717 915	32768	32772		
	11 IN AT (\$1(\$1) C	- H+ 11+ -	117 89	0	0		
max (C/C++ Application) findmax ning single-threaded host code			707 R10	8387951	16778240		
number is 0x000000 with index 2737090			## R51	0	0		
			III R12	1048576	1048576		
ning multi-threaded device code			#FR13	0	0		
			C BT B1A	n .	La B		

- Automated CPU to GPU code refactoring
- Semantic highlighting of CUDA code
- Integrated code samples & docs

Nsight Debugger

- Simultaneously debug of CPU and GPU
- Inspect variables across CUDA threads
- Use breakpoints & single-step debugging

Nsight Profiler

11 12 12

C -duerge up 12

il Thread -121

Burtline Alt Driver Alt

Continue Diffs and

P menday limit

WareCase (Ettai

7 56.5% (4) web

32.6% (4) Webble

W to bry 147 Machingstyle

T 11 Ph [4] Section in

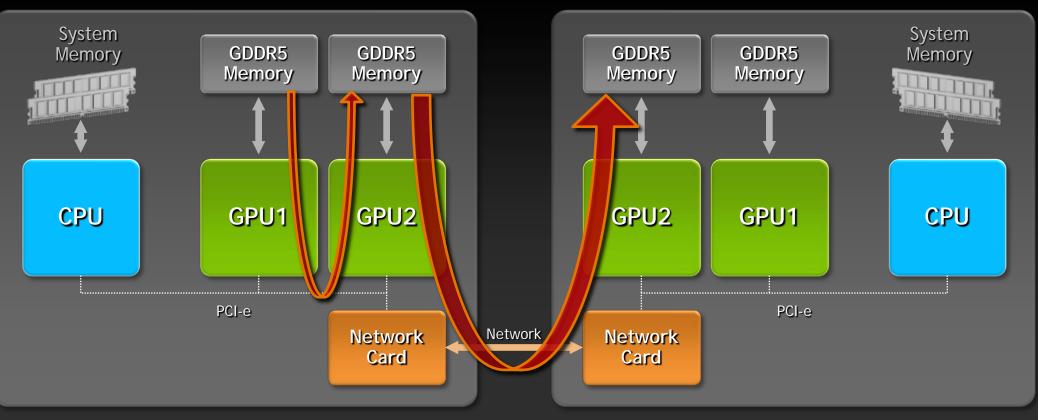
BE Details, ET Co.

State No. 8

Sea

Quickly identifies performance issues

Low Global Humary Store Efficiency [21.3% avg. for kernels accounting for 73.9% of compute

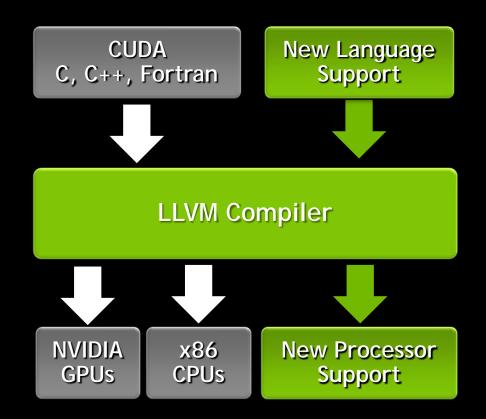

Integrated expert system

Low Global Memory Load Efficiency | 9% and, for key

- Automated analysis
- Source line correlation

Available for Linux and Mac OS

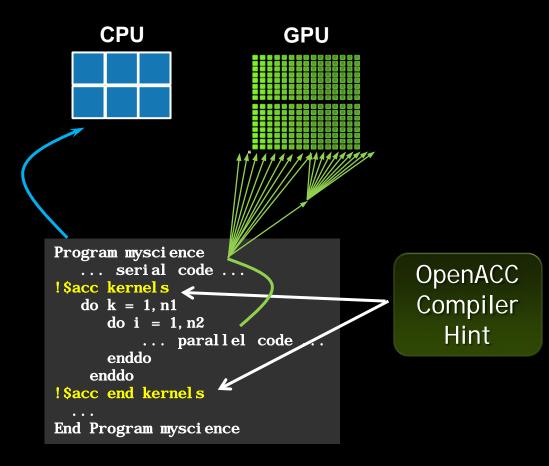
Kepler Enables Full NVIDIA GPUDirect[™]


Server 1

Server 2

GPU Computing with LLVM

Developers want to build front-ends for Java, Python, R, DSLs

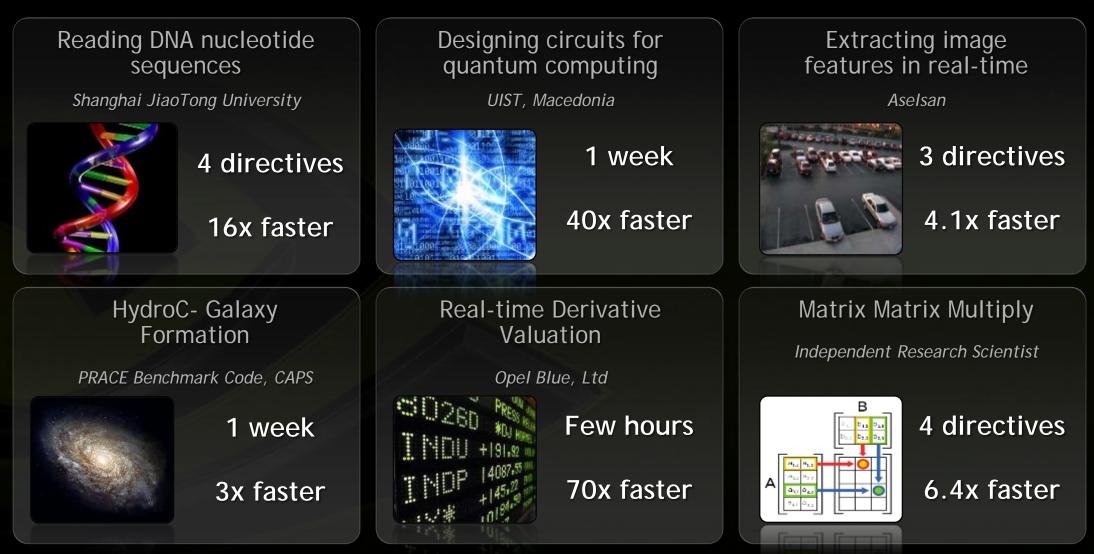

Target other processors like ARM, FPGA, GPUs, x86

NVIDIA Confidential

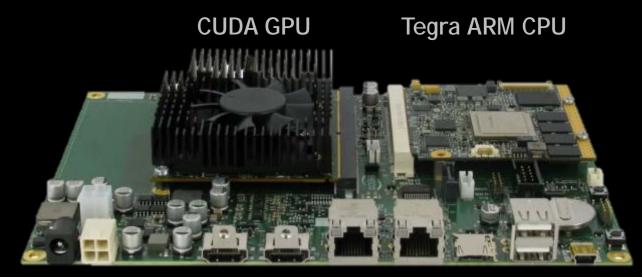
OpenACC Directives

Simple Compiler hints

Compiler Parallelizes code


Portability, Productivity, Performance

Your original Fortran or C code


NVIDIA Confidential

Performance: Leveraging GPU

Enabling ARM Ecosystem: CARMA DevKit CUDA on ARM

Tegra 3 Quad-core ARM A9 Quadro 1000M (96 CUDA cores) Ubuntu Gigabit Ethernet SATA Connector HDMI, DisplayPort, USB

NVIDIA Confidential

The Day Job That Makes It All Possible...

Leverage volume graphics market to serve HPC

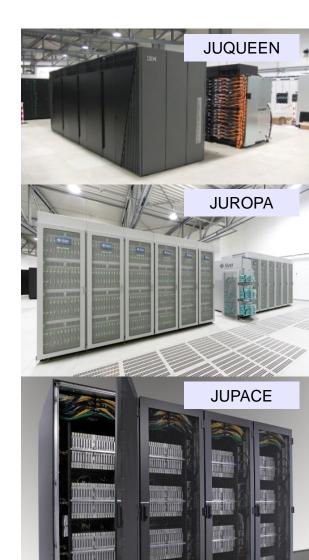
- HPC needs outstrip HPC market's ability to fund the development
- Computational graphics and compute are highly aligned

Tegra

GeForce

Quadro

Jülich-NVIDIA Application Lab


19. June 2012 | Dirk Pleiter (JSC)

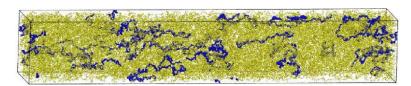
Supercomputing at Forschungszentrum Jülich

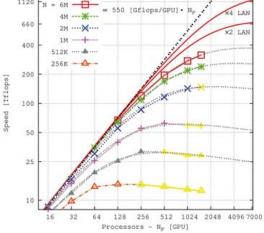
Role of the Jülich Supercomputing Centre (JSC):

- Operation of supercomputers for local, national and European scientists
- User support including support of research communities by means of simulation laboratories
- R&D on future IT technologies, algorithms, tools, GRID, etc.
- Education and training of users

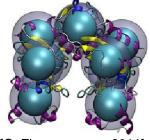
Our view on GPU computing

- Performance acceleration for a significant set of relevant scientific applications
- **JUDGE** = Jülich Dedicated GPU Environment
 - 206 node IBM iDataPlex cluster
 - Dual-CPU, dual-GPU nodes
 - About 240 TFlops (peak)
 - Partitions dedicated to astrophysics and brain research
- Large potential for energy efficient computing
 - JUDGE is #14 on Green500 (Nov. 2011)
 - Need for efficient utilisation of all computing devices



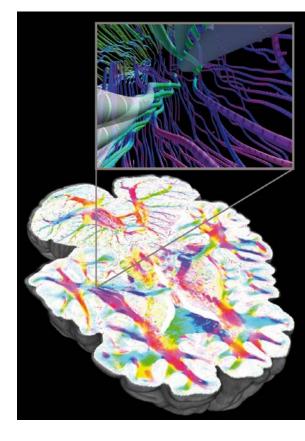

Jülich-NVIDIA Application Lab

- Lab hosted at JSC
- Mission statement
 - Enable scientific applications for GPU-based architectures
 - Provide support for optimization
 - Investigate performance and scaling


Targeted research areas

- Astrophysics and astronomy
- Computational medicine and neuroscience
- Elementary particle physics
- Material science
- Protein folding

[R. Spurzem et al., 2012]


[O. Zimmerrmann, 2011]

[G. Sutmann et al., 2011]

Pilot application: JuBrain

- The Jülich Brain Model will display selected aspects of the brain's structural organization such as cortical areas and fiber tracts
 - Improve understanding of fiber operation
 - Help treating neurological disease
- Procedure
 - Preparation of brain sections
 - Image processing
 - 3D reconstruction and fiber tractography
- Already today significant speed-up using GPUs

[M. Axer et al., 2012]

Questions?