
1

VIP Briefing on GPU Accelerator Technology

Steve Scott, CTO of Tesla
Ian Buck, GM of GPU Computing
Dr. Dirk Pleiter, Juelich

2

Long Term Goals for Tesla

Ease of
Programming
And Portability

Application
Space

Coverage

Power
Efficiency

3

KEPLER
THE WORLD’S FASTEST, MOST
EFFICIENT HPC ACCELERATOR

SMX
Hyper-Q
Dynamic Parallelism

(programmability and
application coverage)

(power efficiency)

4

Dual GK104 GPUs

3x Single Precision
Video, Signal, Life Sciences, Seismic

GK110 GPU

3x Double Precision
Hyper-Q & Dynamic Parallelism
CFD, FEA, Finance, Physics, etc.

Tesla K10 Tesla K20

Available Q4 2012 Available Now

5

Kepler GK110 Block Diagram

7.1B Transistors
15 SMX units
> 1 TFLOP FP64
1.5 MB L2 Cache
384-bit GDDR5

~250 GB/s
PCI Express Gen3

6

Kepler GK110 SMX vs Fermi SM

Ground up redesign for perf/W
6x the SP FP units
4x the DP FP units

Significantly slower FU clocks

3x sustained perf/W

7

Selected Kepler ISA Enhancements

Larger number of registers per thread
63 in Fermi → 255 in Kepler
Common performance limited in Fermi due to register spilling
Significant performance improvement for some codes (e.g.: 5.3x on Quda QCD!)

Atomic operations
Added int64 to match int32
Added functional units → 2-10x performance gains

SHFL instruction for data exchange amongst threads of a warp
Broadcast, shifts, butterflies
Useful for sorts, reductions, etc.

Loads through texture memory
Higher bandwidth and flexibility for read-only data (const__restrict)

Hyper-Q

KEPLER
32 Concurrent Work Queues

This image cannot currently be displayed.

This image cannot currently be displayed.

FERMI
1 Work Queue

This image cannot currently be displayed.

Fermi Concurrency

Fermi allows 16-way concurrency
Up to 16 grids can run at once
But CUDA streams multiplex into a single queue
Overlap only at stream edges

P -- Q -- R

A -- B -- C

X -- Y -- Z

Stream 1

Stream 2

Stream 3

Hardware Work Queue

A--B--C P--Q--R X--Y--Z

Kepler Improved Concurrency

P -- Q -- R

A -- B -- C

X -- Y -- Z

Stream 1

Stream 2

Stream 3
Multiple Hardware Work Queues

A--B--C

P--Q--R

X--Y--Z

Kepler allows 32-way concurrency
One work queue per stream
Concurrency at full-stream level
No inter-stream dependencies

Fermi: Time-Division Multiprocess

CPU Processes
Shared GPU

E F D C B A

CPU Processes
Shared GPU

E F D C B A

Fermi: Time-Division Multiprocess

CPU Processes
Shared GPU

E F D C B A

Fermi: Time-Division Multiprocess

CPU Processes
Shared GPU

E F D C B A

Fermi: Time-Division Multiprocess

CPU Processes
Shared GPU

E F D C B A

Fermi: Time-Division Multiprocess

CPU Processes
Shared GPU

E F D C B A

Fermi: Time-Division Multiprocess

CPU Processes
Shared GPU

E F D C B A

Fermi: Time-Division Multiprocess

Kepler Hyper-Q: Simultaneous Multiprocess

E F D C B A

CPU Processes
Shared GPU

Without Hyper-Q

Time

100

50

0

G
PU

 U
ti

liz
at

io
n

%

A B C D E F

With Hyper-Q

Time

100

50

0

G
PU

 U
ti

liz
at

io
n

%
 A

A
A

B

B B

C

C

C

D

D

D

E

E

E

F

F

F

Easier threaded parallelism

Multi-rank MPI parallelism

Better strong scaling

Dynamic Parallelism

The ability for any GPU thread to launch a parallel GPU kernel
Dynamically
Simultaneously
Independently

CPU GPU CPU GPU

Fermi: Only CPU can generate GPU work Kepler: GPU can generate work for itself

CPU Fermi GPU CPU Kepler GPU

Dynamic Parallelism

Dynamic Work Generation

Higher Performance
Lower Accuracy

Coarse grid

Higher Accuracy
Lower Performance

Fine grid Dynamic grid

Target performance where
accuracy is required

A great example of dynamic parallelism…

GPU

Familiar Syntax and Programming Model

__global__ void B(float *data)
{
 do_stuff(data);

 X <<< ... >>> (data);
 Y <<< ... >>> (data);
 Z <<< ... >>> (data);
 cudaDeviceSynchronize();

 do_more_stuff(data);
}

A

B

C

X

Y

Z

CPU int main() {
 float *data;
 setup(data);

 A <<< ... >>> (data);
 B <<< ... >>> (data);
 C <<< ... >>> (data);

 cudaDeviceSynchronize();
 return 0;
}

main

Simpler Code: LU Example

LU decomposition (Fermi)

dgetrf(N, N) {
 for j=1 to N
 for i=1 to 64
 idamax<<<>>>
 memcpy
 dswap<<<>>>
 memcpy
 dscal<<<>>>
 dger<<<>>>
 next i

 memcpy
 dlaswap<<<>>>
 dtrsm<<<>>>
 dgemm<<<>>>
 next j
}

idamax();

dswap();

dscal();

dger();

dlaswap();

dtrsm();

dgemm();

GPU Code CPU Code

LU decomposition (Kepler)

dgetrf(N, N) {
 dgetrf<<<>>>

 synchronize();
}

dgetrf(N, N) {
 for j=1 to N
 for i=1 to 64
 idamax<<<>>>
 dswap<<<>>>
 dscal<<<>>>
 dger<<<>>>
 next i
 dlaswap<<<>>>
 dtrsm<<<>>>
 dgemm<<<>>>
 next j
}

GPU Code CPU Code

C
P

U
 is

 F
re

e

CUDA By the Numbers:

 CUDA-Capable GPUs >375,000,000

 Toolkit Downloads >1,000,000

 Active Developers >120,000

 Universities Teaching CUDA >500

NVIDIA Confidential

CUDA 5

Nsight™ for Linux & Mac

NVIDIA GPUDirect™

Library Object Linking

Preview Release
Now Available

NVIDIA® Nsight™ Eclipse Edition

CUDA-Aware Editor
Automated CPU to GPU code refactoring
Semantic highlighting of CUDA code
Integrated code samples & docs

Nsight Debugger
Simultaneously debug of CPU and GPU
Inspect variables across CUDA threads
Use breakpoints & single-step debugging

Nsight Profiler
Quickly identifies performance issues
Integrated expert system
Automated analysis
Source line correlation

Available for Linux and Mac OS

,

Network

Kepler Enables Full NVIDIA GPUDirect™

Server 1

GPU1 GPU2 CPU

GDDR5
Memory

GDDR5
Memory

Network
Card

System
Memory

PCI-e

Server 2

GPU1 GPU2 CPU

GDDR5
Memory

GDDR5
Memory

Network
Card

System
Memory

PCI-e

NVIDIA Confidential

GPU Computing with LLVM

Developers want to build
front-ends for

Java, Python, R, DSLs

Target other processors like
ARM, FPGA, GPUs, x86

CUDA
C, C++, Fortran

LLVM Compiler

NVIDIA
GPUs

x86
CPUs

New Language
Support

New Processor
Support

NVIDIA Confidential

OpenACC Directives

Program myscience
 ... serial code ...
!$acc kernels
 do k = 1,n1
 do i = 1,n2
 ... parallel code ...
 enddo
 enddo
!$acc end kernels
 ...
End Program myscience

CPU

This image cannot currently be displayed.

GPU

Your original
Fortran or C code

Simple Compiler hints

Compiler Parallelizes code

Portability, Productivity,
Performance

OpenACC
Compiler

Hint

Performance: Leveraging GPU
Reading DNA nucleotide

sequences
Shanghai JiaoTong University

Designing circuits for
quantum computing

UIST, Macedonia

Extracting image
features in real-time

Aselsan

1 week

40x faster

3 directives

4.1x faster

HydroC- Galaxy
Formation

PRACE Benchmark Code, CAPS

Real-time Derivative
Valuation

Opel Blue, Ltd

Matrix Matrix Multiply

Independent Research Scientist

Few hours

70x faster

4 directives

6.4x faster

4 directives

16x faster

1 week

3x faster

NVIDIA Confidential

CUDA GPU Tegra ARM CPU

Enabling ARM Ecosystem: CARMA DevKit
CUDA on ARM

Tegra 3 Quad-core ARM A9
Quadro 1000M (96 CUDA cores)

Ubuntu

Gigabit Ethernet
SATA Connector

HDMI, DisplayPort, USB

The Day Job That Makes It All Possible…

Leverage volume graphics market to serve HPC
HPC needs outstrip HPC market’s ability to fund the development
Computational graphics and compute are highly aligned

GeForce Quadro Tegra

Jülich-
NVIDIA
Application
Lab

19. June 2012 | Dirk Pleiter (JSC)

Supercomputing at Forschungszentrum Jülich

Role of the Jülich Supercomputing
Centre (JSC):

 Operation of supercomputers for
local, national and European scientists

 User support including support of
research communities by means of
simulation laboratories

 R&D on future IT technologies,
algorithms, tools, GRID, etc.

 Education and training of users

JUQUEEN

JUROPA

JUPACE

• Performance acceleration for a significant set of relevant
scientific applications

• JUDGE = Jülich Dedicated GPU Environment
• 206 node IBM iDataPlex cluster
• Dual-CPU, dual-GPU nodes
• About 240 TFlops (peak)
• Partitions dedicated to astrophysics

and brain research
• Large potential for energy efficient

computing
• JUDGE is #14 on Green500 (Nov. 2011)
• Need for efficient utilisation of all computing devices

Our view on GPU computing

JUDGE

Jülich-NVIDIA Application Lab

[R. Spurzem et al., 2012]

[O. Zimmerrmann, 2011]

[G. Sutmann et al., 2011]

 Lab hosted at JSC
 Mission statement

– Enable scientific applications for
GPU-based architectures

– Provide support for optimization
– Investigate performance and scaling

 Targeted research areas
– Astrophysics and astronomy
– Computational medicine and neuroscience
– Elementary particle physics
– Material science
– Protein folding

Pilot application: JuBrain

[M. Axer et al., 2012]

 The Jülich Brain Model will display
selected aspects of the brain’s structural
organization such as cortical areas and
fiber tracts

– Improve understanding of fiber operation
– Help treating neurological disease

 Procedure

– Preparation of brain sections
– Image processing
– 3D reconstruction and fiber tractography

 Already today significant speed-up using GPUs

Questions?

	1_ISC12_VIP_Breakfast_Briefing_Steve+Ian
	Slide Number 1
	Long Term Goals for Tesla
	�
	Slide Number 4
	Kepler GK110 Block Diagram
	Kepler GK110 SMX vs Fermi SM
	Selected Kepler ISA Enhancements
	Hyper-Q
	Fermi Concurrency
	Kepler Improved Concurrency
	Fermi: Time-Division Multiprocess
	Fermi: Time-Division Multiprocess
	Fermi: Time-Division Multiprocess
	Fermi: Time-Division Multiprocess
	Fermi: Time-Division Multiprocess
	Fermi: Time-Division Multiprocess
	Fermi: Time-Division Multiprocess
	Kepler Hyper-Q: Simultaneous Multiprocess
	Without Hyper-Q
	With Hyper-Q
	Dynamic Parallelism
	Dynamic Parallelism
	Dynamic Work Generation
	A great example of dynamic parallelism…
	Familiar Syntax and Programming Model
	Simpler Code: LU Example
	Slide Number 27
	�CUDA 5��Nsight™ for Linux & Mac��NVIDIA GPUDirect™ ��Library Object Linking��Preview Release �Now Available
	NVIDIA® Nsight™ Eclipse Edition
	Kepler Enables Full NVIDIA GPUDirect™
	GPU Computing with LLVM
	OpenACC Directives�	
	Slide Number 33
	Slide Number 34
	The Day Job That Makes It All Possible…

	1_ISC12_VIP_Breakfast_Briefing_Dirk
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6

